Numerical solution of the one dimensional non-linear Burgers equation using the Adomian decomposition method and the comparison between the modified Local Crank-Nicolson method and the VIM exact solution
نویسندگان
چکیده
The Burgers equation is a simplified form of the Navier-Stokes equations that very well represents their non-linear features. In this paper, numerical methods of the Adomian decomposition and the Modified Crank Nicholson, used for solving the one-dimensional Burgers equation, have been compared. These numerical methods have also been compared with the analytical method. In contrast to the conventional Crank-Nicolson method, the MLCN method is an explicit and unconditionally stable method. The Adomian decomposition method includes the unknown function U (x), in which each equation is defined and solved by an infinite series of unbounded functions. Velocity parameters u in the direction of the X axis, are examined at different times with different Reynolds numbers over a fixed time step. Also the accuracy of the Adomian and the Crank-Nicolson methods at different Reynolds numbers have been studied using two examples with different initial conditions, and the Adomian decomposition method is closer to the analytical method.
منابع مشابه
Numerical solution of the one dimensional non-linear Burgers equation using the Adomian decomposition method and the comparison between the modified Local Crank-Nicolson method and the VIM exact solution
The Burgers’ equation is a simplified form of the Navier-Stokes equations that very well represents their non-linear features. In this paper, numerical methods of the Adomian decomposition and the Modified Crank – Nicholson, used for solving the one-dimensional Burgers’ equation, have been compared. These numerical methods have also been compared with the analytical method. In contrast to...
متن کاملComparison of The LBM With the Modified Local Crank-Nicolson Method Solution of Transient Two-Dimensional Non-Linear Burgers Equation
Burgers equation is a simplified form of the Navier-Stokes equation that represents the non-linear features of it. In this paper, the transient two-dimensional non-linear Burgers equation is solved using the Lattice Boltzmann Method (LBM). The results are compared with the Modified Local Crank-Nicolson method (MLCN) and exact solutions. The LBM has been emerged as a new numerical method for sol...
متن کاملA Comparison Between Fourier Transform Adomian Decomposition Method and Homotopy Perturbation ethod for Linear and Non-Linear Newell-Whitehead-Segel Equations
In this paper, a comparison among the hybrid of Fourier Transform and AdomianDecomposition Method (FTADM) and Homotopy Perturbation Method (HPM) is investigated.The linear and non-linear Newell-Whitehead-Segel (NWS) equations are solved and the results arecompared with the exact solution. The comparison reveals that for the same number of componentsof recursive sequences, the error of FTADM is ...
متن کاملNUMERICAL SOLUTION OF BOUSSINESQ EQUATION USING MODIFIED ADOMIAN DECOMPOSITION AND HOMOTOPY ANALYSIS METHODS
In this paper, a Boussinesq equation is solved by using the Adomian's decomposition method, modified Adomian's decomposition method and homotopy analysis method. The approximate solution of this equation is calculated in the form of series which its components are computed by applying a recursive relation. The existence and uniqueness of the solution and the convergence of the proposed methods ...
متن کاملA numerical solution of Burgers' equation by modified Adomian method
In this paper, the modified Adomian s decomposition method for calculating a numerical solution of the one-dimensional quasi-linear, the Burgers equation, is presented. Time discretization has been used in decomposition, without using any transformation in the Burgers equation such as Hopf–Cole transformation. The numerical results obtained by this way for various values of viscosity have been ...
متن کامل